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Supplementary Material

Summary
The supplementary material consists of the following four
parts: (1) A detailed description of our method; see Section
1. (2) Limitation analysis and failure case; see Section 2.
(3) A detailed introduction to the dataset, including both the
synthetically simulated scenarios and the real-world cap-
tured scenarios; see Section 3. (4) Additional results, in-
cluding quantitative and qualitative comparison experimen-
tal results with state-of-the-arts methods [3, 5, 6], as well
as more qualitative experimental results of our method; see
Section 4.

1. Details of Method
Correspondences between N point clouds are required both
for point cloud registration in Motion Attributes Initial-
ization and for motion loss computation in Optimization.
Therefore, we provide a more detailed description of how
to obtain correspondences:

(1) Optical flow estimation to obtain pixel-level corre-
spondences between frames; (2) All estimated flows are
then propagated to establish consistent mappings between
each of the N frames and the reference (first) frame; (3)
Depth values from corresponding pixels (using per-frame
depth maps) are converted to discrete point clouds, yielding
N mutually corresponding point clouds for motion estima-
tion. This simple and efficient strategy ensures consistent
inter-frame correspondences for motion estimation.

2. Limitation analysis & failure case
As noted in conclusion, our method relies on depth and
optical flow estimation. While these components are typi-
cally robust, they may fail in extreme cases, e.g., textureless
regions and highly dynamic scenes cause unstable optical
flow estimation (Fig. 1), leading to suboptimal parsing.

Figure 1. Suboptimal parsing result in extreme case.

3. Details of Dataset
Our goal is to analyze motion parts and their motion at-
tributes from monocular videos. For effective evaluation
of our algorithm, we have constructed a Motion Pars-
ing Dataset that primarily comprises virtual simulation

and real-world scenarios. It includes various common
articulated object categories such as drawers, wardrobes,
laptops, staplers, and liftchairs, which cover three main
types of articulated motion: translation, rotation, and ro-
tation+translation. Some scenes contain multiple motion
parts with different motion types, aimed at verifying the ef-
fectiveness of relevant algorithms in solving complex tasks.
The statistical details of the dataset are presented in Tab.1.

Figure 2. Virtual simulation scenarios. Each row represents a se-
quence of video frames captured in a virtual scene.

Figure 3. Real-world scenarios. Each row represents a sequence
of video frames captured in a real-world scene.

3.1. Virtual Simulation Scenarios
For virtual simulation scenarios, we first collect 3D models
from 3D Warehouse [2] and annotate the motion parts and
motion attributes using Blender [1]. Subsequently, robots
are introduced into the scenes to simulate the interaction
operations of articulated object. Finally, the constructed



Data Type Number of
Scenes

Number of
Motion Parts

Distribution of
Motion Types

Object Categories

Virtual 15 18

10×rotation

7×translation

1×rotation-translation

Fridge(3), Door(1), Cupboard(4), Faucet(1), Laptop(1)

Drawer(6), Flatdoor(1)

Liftchair(1)

Real-world 11 13

8×rotation

4×translation

1×rotation-translation

Cupboard(3), Laptop(3), Wrench(1), Stapler(1)

Drawer(4)

Pumpbottle(1)

Table 1. The statistical of the dataset. ’10×rotation’ indicates that the rotation motion type contains 10 motion parts, ’Fridge(3)’ indicates
that the articulated object category ‘’Fridge’ contains 3 motion parts, and similar symbols apply accordingly.

rotation translation rotation-translation

Metrics Methods Fridge*3 Door Cupboard*4 Faucet Laptop Drawer*6 Flatdoor Liftchair Mean

AE(◦)↓
Shape of Motion 2.995 1.089 3.841 8.785 9.001 12.525 0.245 2.363 6.721

Ours 1.077 1.129 1.341 0.298 1.681 1.183 0.280 1.506 1.262

PE(cm)↓
Shape of Motion 8.481 7.866 15.043 1.752 25.665 - - 9.863 11.887

Ours 4.938 11.225 5.547 0.057 2.889 - - 2.093 4.843

Table 2. Comparison with Shape of Motion. Our method outperforms Shape of Motion in the motion axis prediction.

dynamic scenes are rendered using Blender [1], capturing
motion videos sequences. To quantitatively analyze the re-
sults of the motion parts and motion attributes parsing, we
also captured 3D point clouds with annotations of motion
parts and motion attributes. A total of 15 virtual motion
simulation scenarios were built, some examples are shown
in Fig.2.

3.2. Real-world scenarios
For real-world scenarios, we use the camera directly capture
motion videos of articulated objects. The intrinsic parame-
ters of camera are calibrated using COLMAP [4]. Unlike
virtual simulation scenarios, we cannot obtain geometric
and annotation information for real-world scenarios. There-
fore, we only perform qualitative analysis on the real-world
data. A total of 11 real-world scenarios were constructed,
some examples are shown in Fig.3.

4. Additional Experimental Results
To further substantiate the superiority and effectiveness of
our method, we also conducted a quantitative comparison
with Shape of Motion [6], a dynamic scene reconstruction
method, as shown in Tab.2. Moreover, we conducted quali-
tative comparisons in motion parameter prediction with the
state-of-the-arts algorithms (PARIS-scene, PARIS-obj [3],
DGMarbles* [5], Shape of Motion [6] and ours(w/o optim))
on additional data, as shown in Fig. 5 and Fig. 4; as well
as more qualitative analysis results of motion parts and mo-

tion attributes of our method from more video sequences,
detailed in Fig. 6–19, where each figure includes the analy-
sis results of two scenes. For each scene, the first row rep-
resents the input (video sequence) to the algorithm, while
the second to fourth rows show the continuous motion vi-
sualization of motion parts based on motion attributes from
different viewpoints.

Shape of MotionInput Ours DGMarbles*

Figure 4. Comparison in real-world scenarios. All the motion parts
segmentation results are from ours, with a focus on evaluating the
motion axis predictions. The comparison clearly shows that our
method outperforms other methods.



Input GTOursDGMarbles* Ours(w/o optim)PARIS-scene PARIS-obj

Figure 5. More qualitative comparison with state-of-the-arts methods (PARIS-scene, PARIS-obj, DGMarbles*) and Ours(w/o optim).



Real-world Data Results

Figure 6. Analysis results of motion parts and their motion attributes for real-world scenes 1-2.



Figure 7. Analysis results of motion parts and their motion attributes for real-world scenes 3-4.



Figure 8. Analysis results of motion parts and their motion attributes for real-world scenes 5-6.



Figure 9. Analysis results of motion parts and their motion attributes for real-world scenes 7-8.



Figure 10. Analysis results of motion parts and their motion attributes for real-world scenes 9-10.



Figure 11. Analysis results of motion parts and their motion attributes for real-world scene 11.



Virtual Data Results

Figure 12. Analysis results of motion parts and their motion attributes for virtual simulation scenes 1-2.



Figure 13. Analysis results of motion parts and their motion attributes for virtual simulation scenes 3-4.



Figure 14. Analysis results of motion parts and their motion attributes for virtual simulation scenes 5-6.



Figure 15. Analysis results of motion parts and their motion attributes for virtual simulation scenes 7-8.



Figure 16. Analysis results of motion parts and their motion attributes for virtual simulation scenes 9-10.



Figure 17. Analysis results of motion parts and their motion attributes for virtual simulation scenes 11-12.



Figure 18. Analysis results of motion parts and their motion attributes for virtual simulation scenes 13-14.



Figure 19. Analysis results of motion parts and their motion attributes for virtual simulation scenes 15.
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